Set Theory 292B: Model-theoretic Forcing and Its Applications
نویسنده
چکیده
In 1962 Paul Cohen invented set-theoretic forcing to solve the independence problem of continuum hypothesis. It turns out that forcing is quite powerful tool and it has applications in many branches of mathematics. In 1970s Abraham Robinson extended Cohen’s forcing to model theory and developed finite forcing and infinite forcing. In this term paper we study Robinson’s finite forcing and related applications in model-theoretical settings. It is based on Robinson’s work in [1, 2].
منابع مشابه
Forcing indestructibility of set-theoretic axioms
Various theorems for the preservation of set-theoretic axioms under forcing are proved, regarding both forcing axioms and axioms true in the Levy-Collapse. These show in particular that certain applications of forcing axioms require to add generic countable sequences high up in the set-theoretic hierarchy even before collapsing everything down to א1. Later we give applications, among them the c...
متن کاملSome Second Order Set Theory
Set theory is the study of sets, particularly the transfinite, with a focus on well-founded transfinite recursion. Began with Cantor in late 19th century, matured in mid 20th century. Set theory today is vast: independence, large cardinals, forcing, combinatorics, the continuum, descriptive set theory,... Set theory also serves as an ontological foundation for all (or much of) mathematics. Math...
متن کاملForcing in proof theory
Paul Cohen’s method of forcing, together with Saul Kripke’s related semantics for modal and intuitionistic logic, has had profound effects on a number of branches of mathematical logic, from set theory and model theory to constructive and categorical logic. Here, I argue that forcing also has a place in traditional Hilbert-style proof theory, where the goal is to formalize portions of ordinary ...
متن کاملInner Model Theoretic Geology
One of the basic concepts of set theoretic geology is the mantle of a model of set theory V: it is the intersection of all grounds of V, that is, of all inner models M of V such that V is a set-forcing extension of M . The main theme of the present paper is to identify situations in which the mantle turns out to be a fine structural extender model. The first main result is that this is the case...
متن کاملFuzzy Forcing Set on Fuzzy Graphs
The investigation of impact of fuzzy sets on zero forcing set is the main aim of this paper. According to this, results lead us to a new concept which we introduce it as Fuzzy Zero Forcing Set (FZFS). We propose this concept and suggest a polynomial time algorithm to construct FZFS. Further more we compute the propagation time of FZFS on fuzzy graphs. This concept can be more efficient to model...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002